Shear Viscosity of the "semi"-QGP

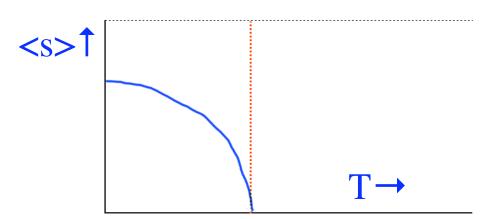
- 1. Deconfinement and Polyakov loops: possible phase transitions
- 2. SU(∞) on a small sphere (Sundborg '99, Aharony et al '03, '05): Matrix model; Gross-Witten point; semi-QGP
- 3. Lattice: pressure for SU(N)
 With quarks: flavor independence. Without quarks: N = 3 like $N = \infty$ Is the QCD coupling big at T_c ? Maybe *not*.
- 4. Renormalized Polyakov Loops & the semi-QGP
- 5. Shear viscosity of the semi-QGP

For heavy ions, is LHC like RHIC?

Strong-QGP,
$$\mathcal{N}=4$$
 SUSY: yes. Semi-QGP, no.

1. Some possible deconfining transitions

Polyakov loops & deconfinement


Polyakov loop: order parameter for deconfinement in SU(N):

$$\ell = \frac{1}{N} \operatorname{tr} \mathcal{P} \exp \left(ig \int_0^{1/T} A_0 \ d\tau \right)$$
 $\tau \uparrow$

Ordinary magnetization:

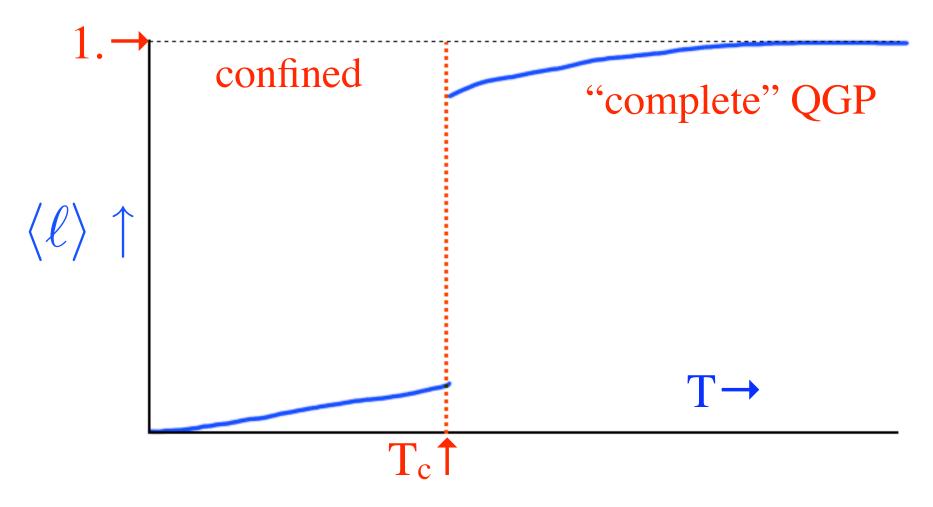
 $\langle s \rangle \neq 0$ at low T, $\langle s \rangle = 0$ at high T.

Deconfinement: Polyakov loop "flipped", Global Z(N) symmetry: *broken* at high T, *restored* at low T.

Classify possible deconfining transitions by change in < loop >.

Assume overall normalization of loop physical:

Quarks act like background Z(N) field.

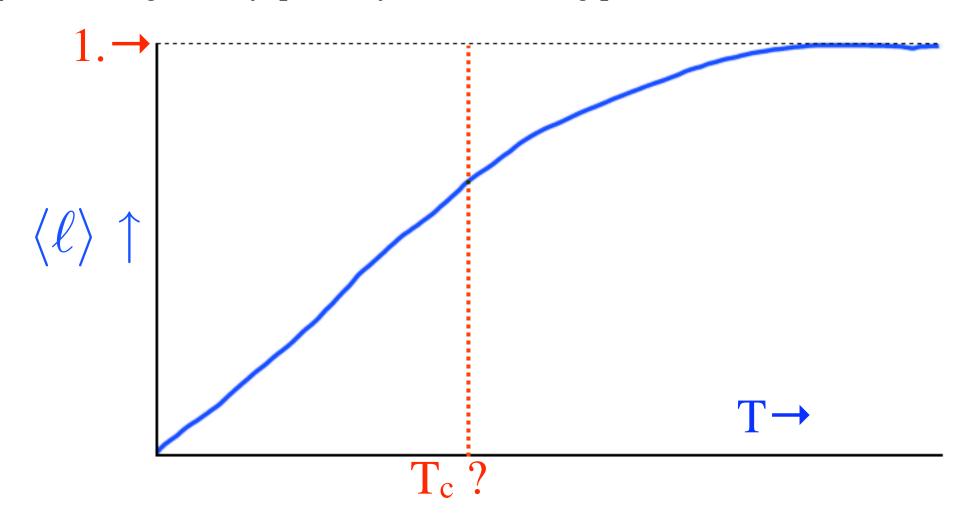

$$\langle \ell \rangle \to 1$$
 , $T \to \infty$

Consider order parameter, *not* pressure, p(T); pressure always continuous.

One possibility

Transition from confined phase to "complete" Quark-Gluon Plasma (QGP) Complete QGP: loop near 1, ≈ perturbative.

Transition strongly first order. Effect of quarks weak.

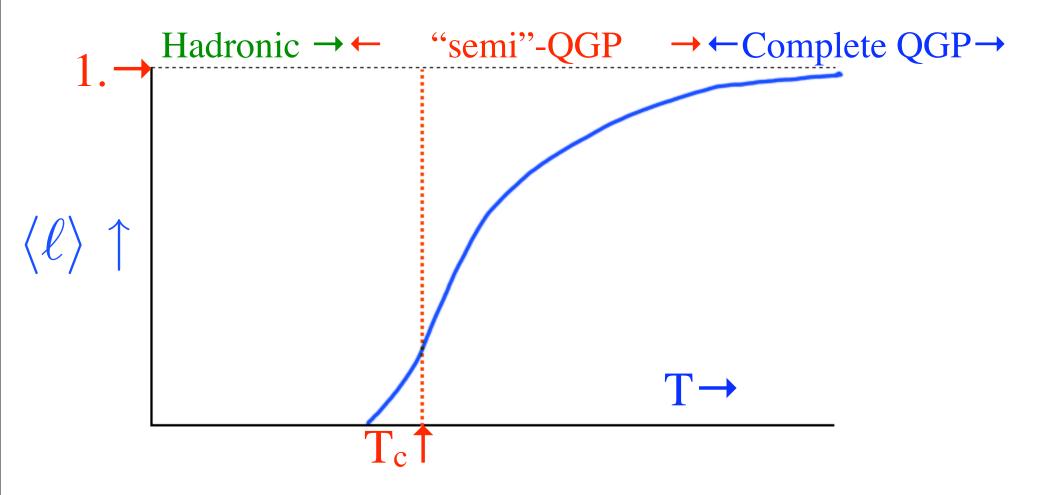


Logically possible, does *not* appear to arise in *any* context. (Lattice, analytical...) General expectation before RHIC.

Another possibility

Many quarks, strong background field.

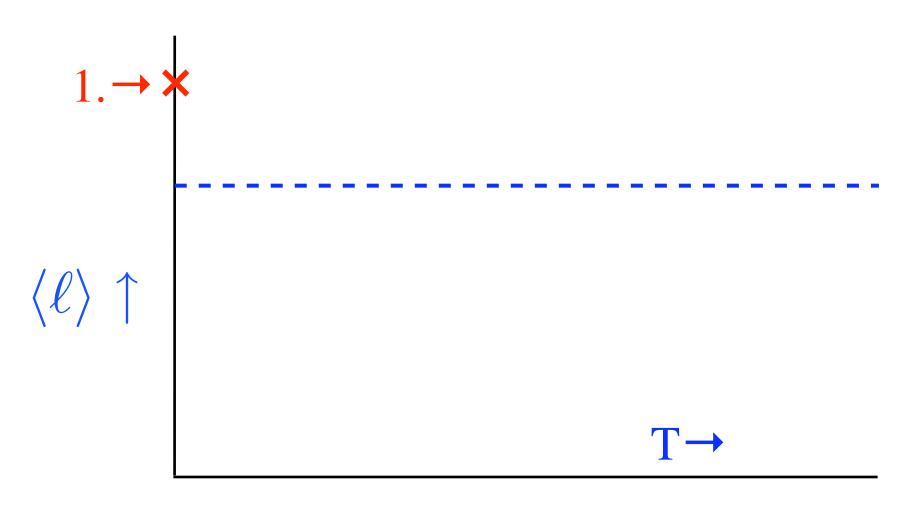
Loop increases gradually, probably no deconfining phase transition.


Probably true for large number of flavors, completely wash out deconfinement. Also: perhaps no chiral transition?

QCD?

Analytic solution, and lattice, show: even with dynamical quarks, *three* regimes: Hadronic, $\langle loop \rangle \sim 0$.

"Semi"-QGP: <*loop*> nonzero, but *not* near one. Matrix model.


Complete QGP: <*loop*> near one. Usual "perturbative" regime (resummed!)

$$\mathcal{N}=4$$
 SU(∞)

AdS/CFT: Can define <loop> = 1 at T = 0 (Polyakov-Maldacena, + scalars)

Constant at $T \neq 0$ (like pressure/ T^4): value, vs g^2 N? *Not* a deconfining transition.

2. Deconfinement for $SU(\infty)$ on a small sphere

SU(∞) on a small sphere: Hagedorn temperature

Sundborg, hep-th/9908001

AMMPV: Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk, hep-th/0310285 & 0502149

Consider SU(N) on a *very* small sphere: radius R, with $g^2(R) \ll 1$. (Sphere because constant modes simple, spherically symmetric)

At $N = \infty$, can have a phase transition even in a *finite* volume.

When $g^2 = 0$: by counting gauge *singlets*, find a Hagedorn temperature, T_H :

$$\rho(E) \sim \exp(E/T_H) \ , \ E \to \infty$$

At $N = \infty$, Hagedorn temperature is *precisely* defined, calculable at $g^2 = 0$

$$T_H = \frac{1}{\log(2+\sqrt{3})} \frac{1}{R} , g^2 = 0.$$

SU(∞) on a small sphere: effective theory

Construct effective theory for low energy (constant) modes, by integrating out high energy modes, with momenta ~ 1/R:

Consider (thermal) Wilson line:

$$\mathbf{L} = \mathcal{P} \exp\left(ig \int_0^{1/T} A_0 \ d\tau\right)$$

L is gauge dependent,

$$\mathbf{L} \to \Omega(1/T)^{\dagger} \mathbf{L} \Omega(0)$$

Traces of moments gauge invariant,

$$\ell_j = \frac{1}{N} \operatorname{tr} \mathbf{L}^j$$
, $j = 1 \dots (N-1)$

Effective theory for l_j : compute free energy in *constant* background A₀ field:

Q = diagonal matrix.

$$A_0 = \frac{T}{g} Q , \mathbf{L} = e^{iQ}$$

SU(∞) on a small sphere & the Polyakov loop

When $g^2 = 0$:

$$\mathcal{V}_{eff} = N^2 \left(m^2 \, \ell_1^2 + \mathcal{V}_{Vdm} + \ldots \right) \quad ; \quad m^2 \sim T_H^2 - T^2$$

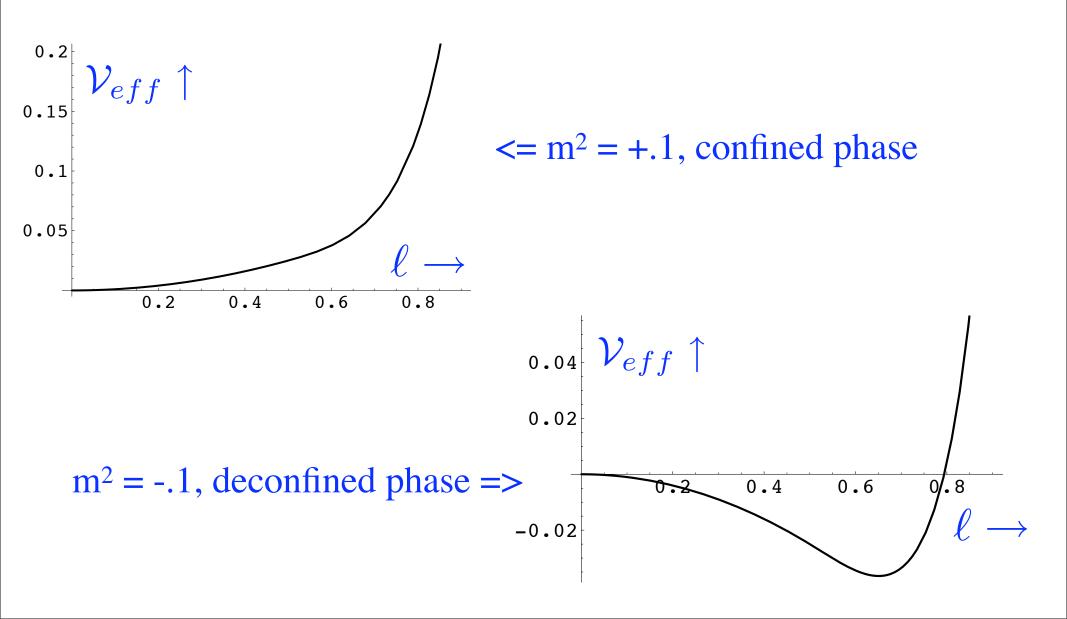
At the Hagedorn temperature, T_H , only the first mode, l_1 , is unstable; all other modes are stable. Concentrate on that mode, $l \equiv l_1$.

Vandermonde determinant in measure for constant mode gives "Vdm potential":

$$\mathcal{V}_{\mathrm{Vdm}} = + \ell^2 \ , \ \ell < \frac{1}{2}$$

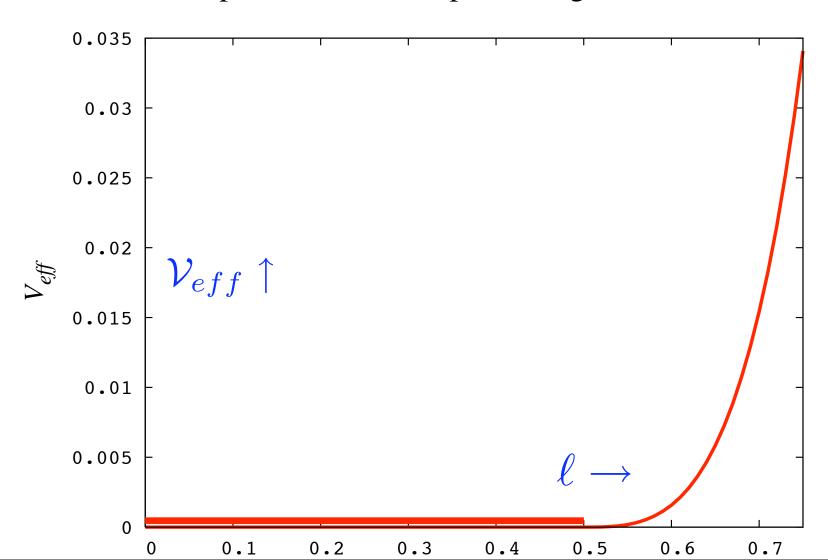
$$V_{Vdm} = -\frac{1}{2} \log (2 (1 - \ell)) + \frac{1}{4} , \ \ell \ge \frac{1}{2}$$

Vdm potential has discontinuity of *third* order at l = 1/2.

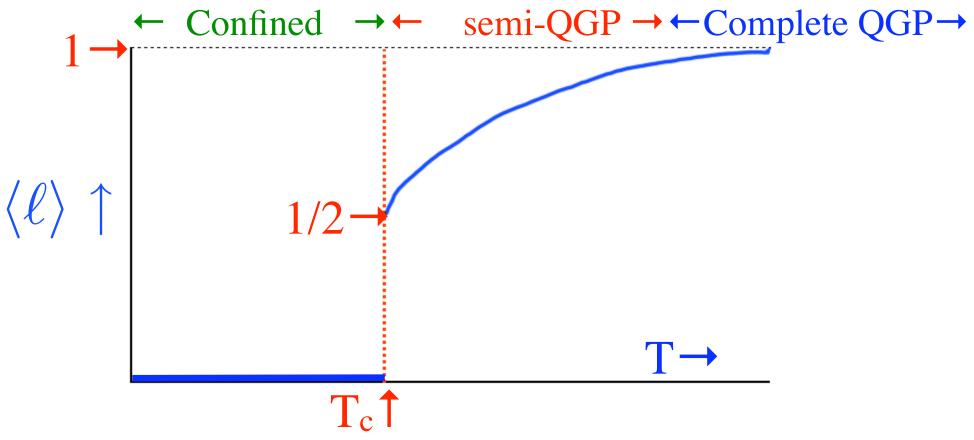

Gross & Witten '81; Kogut, Snow & Stone '82....

Sundborg, '99....AMMPV '03 & '05

Dumitru, Hatta, Lenaghan, Orginos & RDP, hep-th/0311223 = DHLOP Dumitru, Lenaghan & RDP, hep-ph/0410294.


Deconfinement on a small sphere

Have deconfining phase transition when $m^2 = 0$: first order, $\langle l \rangle = 1/2$ at $T_c = T_H$. Obvious from potentials above and below T_c :



Gross-Witten point

At transition, order parameter $\langle loop \rangle$ jumps from 0 to 1/2. Latent heat nonzero. DLP: masses vanish, asymmetrically: "critical" 1st order transition: "GW point". At $m^2 = 0$, $\langle loop \rangle$ jumps because of 3rd order discontinuity in Vdm potential GW point like tricritical point in extended phase diagram.

Semi-QGP on a small sphere

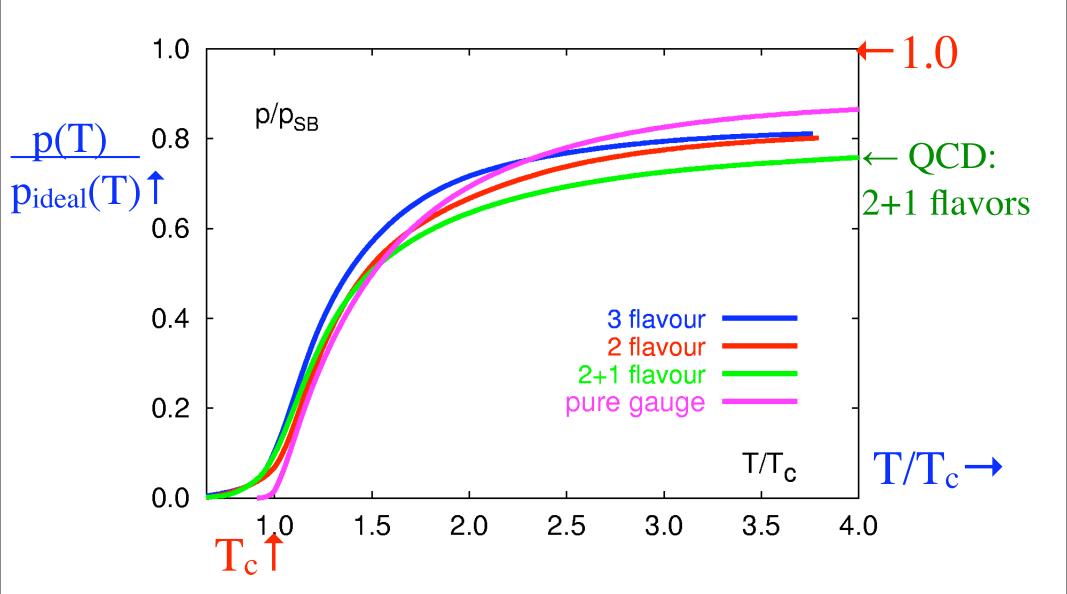
Boundary btwn complete and semi-QGP *not* precise; $< loop> \rightarrow 1$ by T $\sim \#$ T_c? To higher order in g^2 :

$$\mathcal{V}_{eff} = \mathcal{V}_{eff}(g^2 = 0) - c_3 g^4 (\ell^2)^2$$
 $c_3 > 0.$

AMMPV '05: calculate free energy with $Q \neq 0$ to *two* loop order at small R $c_3 > 0 \Rightarrow T_c = T_H - O(g^4)$. Deconfinement first order, *below* T_H

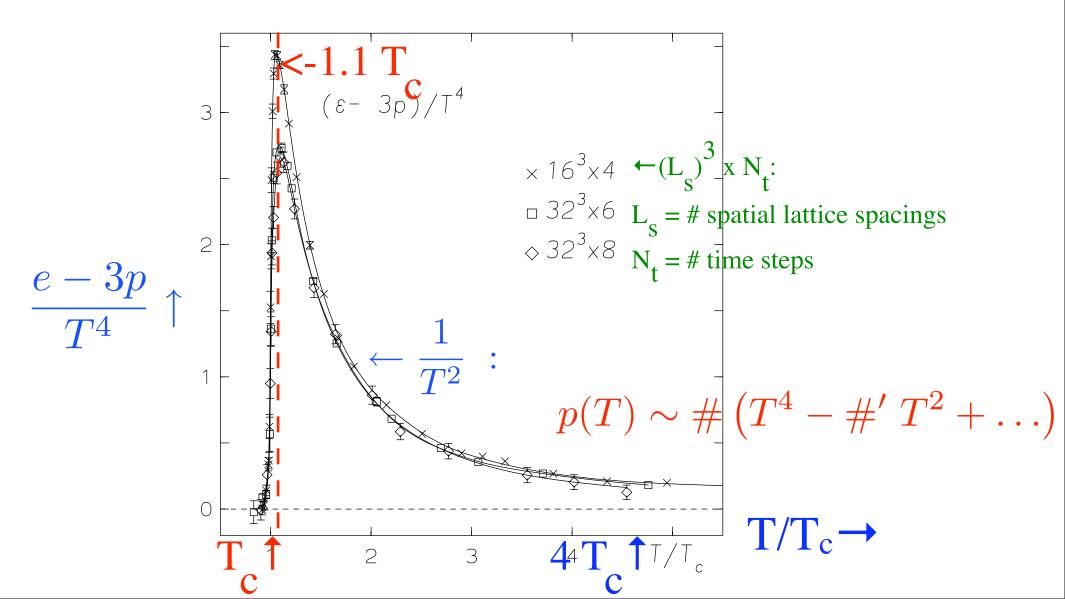
3. Lattice: pressure. N = 3 like $N = \infty$?

Maybe α_s is *not* so big at T_c


Lattice: pressure & "flavor independence"

Pure SU(3): weakly 1st order

QCD: and 2+1 flavors: crossover

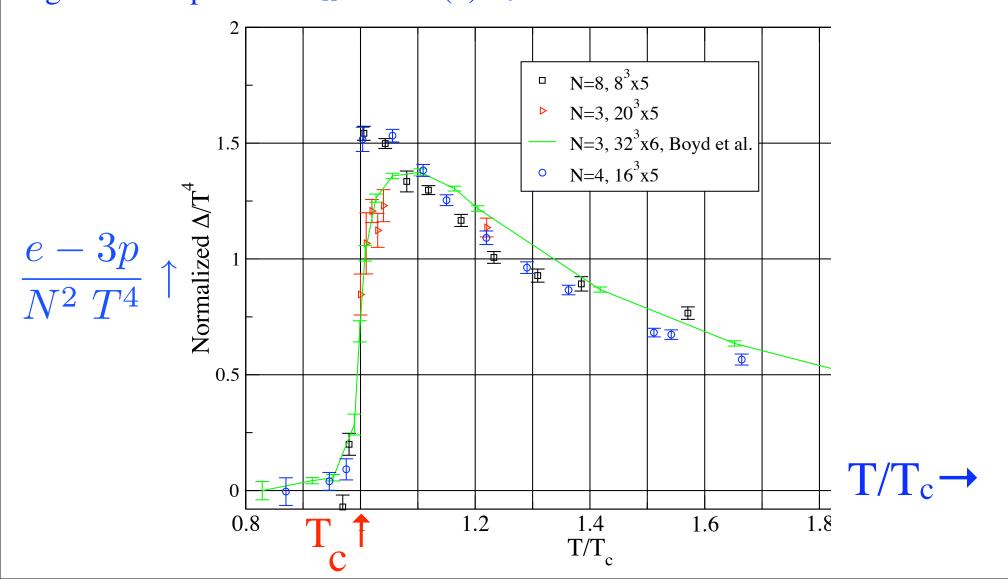

Bielefeld: properly scaled, ≈ *universal* pressure

$$\frac{p}{p_{ideal}} \left(\frac{T}{T_c} \right) \approx \text{const.}$$

Lattice: SU(3) glue, no quarks

More sensitive than pressure: $(e-3p)/T^4$, e = energy density, p = pressure Bielefeld, hep-lat/9602007. $N_t = \#$ time steps: 6, 8 near continuum limit? Pressure: sum of ideal gas, T^4 , plus T^2 , then "MIT bag constant", T^0 .

Lattice: SU(3) close to $SU(\infty)$?

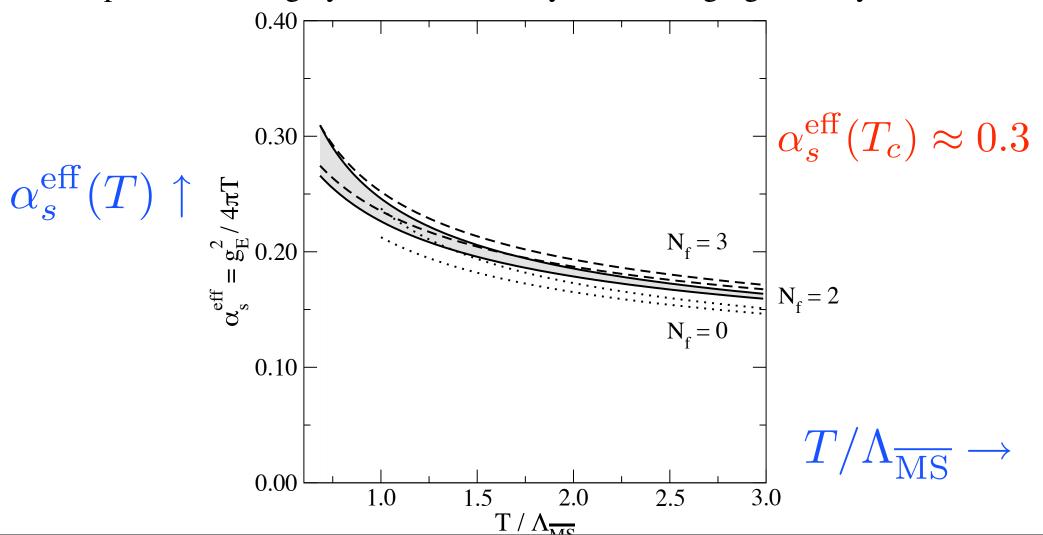

Bringoltz & Teper, hep-lat/0506034 & 0508021:

SU(N), no quarks, N=3, 4, 6, 8, 10, 12.

Deconfining transition first order, latent heat $\sim N^2$.

Hagedorn temperature $T_H \sim 1.116(9) T_c$ for $N = \infty$

 $\frac{e-3p}{N^2 T^4} \sim \text{const.}$

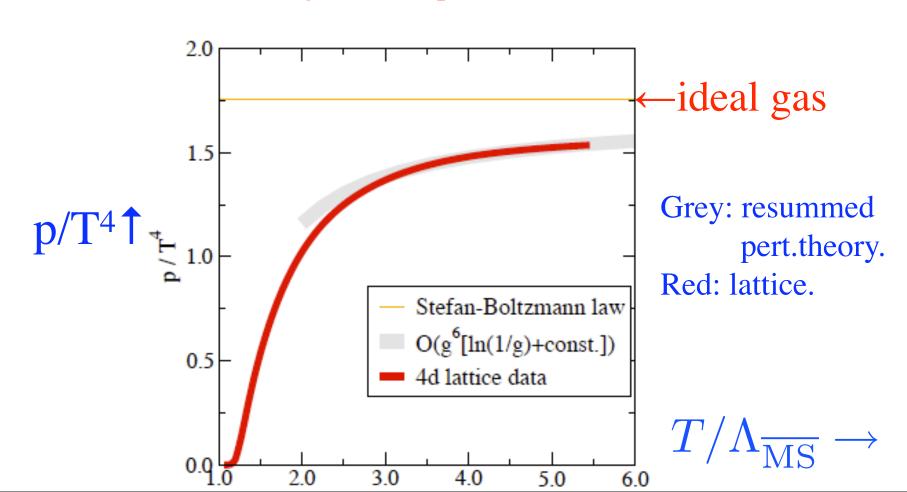


Maybe α_s is *not* so big at T_c

Laine & Schröder, hep-ph/0503061 & 0603048

 $T_c \sim \Lambda_{MS} \sim 200$ MeV. But $\alpha_s^{eff}(T) \sim \alpha_s^{eff}(2 \pi T) \sim 0.3$ at T_c : not so big

Two loop calculation: grey band uncertainty from changing scale by factor 2.


Perturbative resummation of the pressure

"Helsinki" resummation: Di Renzo, Laine, Schröder, Torrero, 0808.0557

$$\mathcal{L}^{eff} = \frac{1}{2} \operatorname{tr} G_{ij}^2 + \operatorname{tr} |D_i A_0|^2 + m_D^2 \operatorname{tr} A_0^2 + \kappa \operatorname{tr} A_0^4$$

Now to 4 loop, $\sim g^6$. Works to $\sim 3 T_c$, fails below.

Why, if $\alpha_s^{\text{eff}}(T_c)$ is not so big? Perhaps a semi-QGP near T_c ?

4. Renormalized Polyakov loops & semi-QGP

Renormalized loops

Polyakov '80, Dotsenko & Vergeles '81...DHLOP '03...

Gupta, Hubner & Kaczmarek 0711.2251 = GHK

Like mass ren. of heavy quark. In 3+1 dim.'s, linear div.

Vanishes with dimensional regularization, but not on the lattice:

$$\langle \ell_R \rangle - 1 \sim \# \frac{C_R g^2}{T} \int_{-\infty}^{1/a} \frac{d^3 k}{k^2} = \# \left(C_R g^2 + \#' g^4 + \ldots \right) \frac{1}{aT}$$

Loop in representation R, Casimir C_R.

1/(a T) = # time steps, N_t . Renormalized loop:

$$\ell_R^{\text{bare}} = \mathcal{Z}_R(g^2)^{N_t} \ell_R^{\text{ren}}$$

Can choose
$$\langle \ell \rangle \to 1$$
 , $T \to \infty$

GHK: find approximate Casimir scaling:

Like cusp anomalous dimension.

$$\mathcal{Z}_R(g^2) \approx \mathcal{Z}(g^2)^{C_R}$$

Zero point energy & renormalized loops

Renormalization valid for arbitrary Wilson loops:

$$\mathcal{W} = \operatorname{tr} \mathcal{P} e^{ig \oint A_{\mu} dx^{\mu}} \quad ; \quad \mathcal{W}_{\text{bare}} = \mathcal{Z}_{\text{div}} \mathcal{W}_{\text{ren}}$$

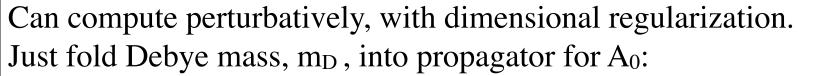
Two ambiguities:

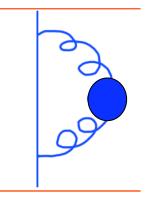
$$\mathcal{Z}_{\text{div}} = e^{E_0 L} \mathcal{Z}_0 \mathcal{Z}(g^2 \dots)^{L/a} \; ; \; \mathcal{W}_{\text{ren}} \to e^{-E_0 L} \mathcal{Z}_0^{-1} \mathcal{W}_{\text{ren}}$$

Overall scale trivial: $Z_0 = 1$ by requiring $\langle loop \rangle \rightarrow 1$ as $T \rightarrow \infty$.

 E_0 = ground state energy for potential from Wilson loop: $E_0 = \# \sqrt{\sigma}$. #?

 E_0 : can *define* = 0 order by order in perturbation theory with *any* regulator (Obvious with dimensional reg.. Also true with higher derivatives...) $E_0 = 0$ also in string model: Nambu-Goto *plus* extrinsic curvature terms...


Lattice provides *non*-perturbative way to *define* $E_0 = 0$. Still, its a choice...


T = 0 potential with dynamical quarks: can define *energy* for string breaking?

Renormalized loops at high T

Gava & Jengo '81:

Renormalized loops approach unity from above.

$$\langle \ell_R^{\rm ren} \rangle - 1 \sim (-) \frac{C_R g^2}{T} \int d^3k \, \frac{1}{k^2 + m_{\rm D}^2} \sim (-) \, \frac{C_R g^2}{T} \, (-) \, \sqrt{m_{\rm D}^2}$$

Sign of the integral is *negative*; like subtracting $1/k^2$ propagator.

$$\langle \ell_R^{\rm ren} \rangle - 1 \sim (+) \frac{C_R}{N} \frac{(g^2 N)^{3/2}}{8\pi\sqrt{3}}$$

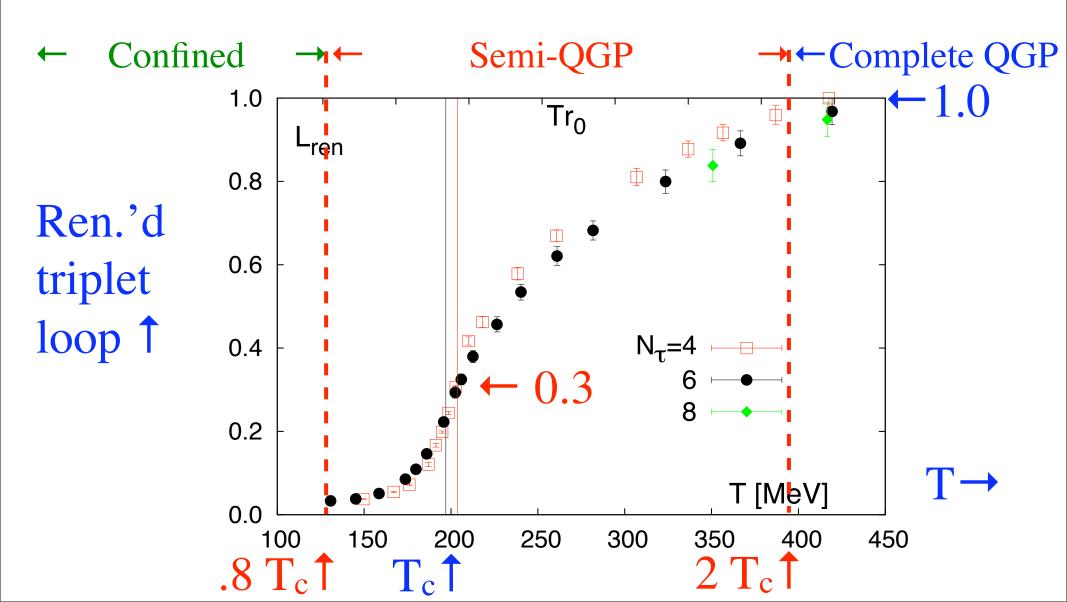

Lattice: ren.'d triplet loop, pure SU(3)

GHK: Lattice SU(3), no quarks. Two ways of getting ren'd loop agree.

 $< triplet loop > \sim 1/2$ at $T_c^+!$ N=3 close to Gross-Witten point?

 $< adjoint\ loop > \sim 0.01\ just\ below\ T_c$. Only natural in matrix model.

semi-QGP: from (exactly) T_c^+ to 2 - 4 T_c (?). $< loop > \sim$ constant above 4 T_c .



Lattice: renormalized loop with quarks

Cheng et al, 0710.0354: \sim QCD, 2+1 flavors. $T_c \sim 190$ MeV, crossover.

<loop>: nonzero from $\sim 0.8~T_c$; ~ 0.3 at T_c ; ~ 1.0 at $2~T_c$.

Semi-QGP from $\sim 0.8~T_c~(below~T_c)$ to $\sim 2-3~T_c~(?)$. < loop > small at T_c .

4. Shear viscosity of the semi-QGP

Semi-QGP in weak coupling

Hidaka & RDP 0803.0453. Semi-classical expansion of the semi-QGP:

$$A_{\mu} = A_{\mu}^{\text{cl}} + B_{\mu} , A_{0}^{\text{cl}} = Q/g .$$

 $Q \neq 0$: just like semi-classical calc. of 't Hooft loop. $Q = Q^a$, diagonal matrix. Work at large N, large N_f, use double line notation. (Finite N ok, messy.)

a
$$\rightarrow$$
 $iD_0^{\text{cl}} = p_0 + Q^a = p_0^a$
$$iD_0^{\text{cl}} = p_0 + Q^a - Q^b = p_0^{ab}$$

Perturbation theory in B_{μ} 's same as Q = 0, but with "shifted" p_0 's. Amplitudes in real time: $p_0^a \rightarrow i \omega$, etc. Furuuchi, hep-th/0510056

Q (imaginary) chemical potential for (diagonal) color charge. e.g., for quarks:

$$\widetilde{n}(E - iQ^a) = \frac{1}{e^{(E - iQ^a)/T} + 1}$$

Z(N) interfaces = 't Hooft loop

Z(N) interface: Z(N) "twist" in z-direction. A_{tr} = transverse area.

$$A_0^{\rm cl} = \frac{2\pi T}{gN} \ q(z) \ t_N$$

$$\langle L \rangle = 1$$

 $t_N = diag(1_{N-1}, -N+1)$. $A_0 \sim$ "coordinate" q(z).

 $L_{\text{eff}} = \text{classical} + 1 \text{ loop potential, for } constant A_0$

$$\langle L \rangle = \mathrm{e}^{2\pi i/N} \mathbf{1}$$

$$\mathcal{L}_{\text{eff}} = \frac{4\pi^2(N-1)T^3}{\sqrt{3g^2N}} A_{\text{tr}} \int dz \left(\left(\frac{dq}{dz} \right)^2 + q^2(1-q)^2 \right)$$

Bhattacharya, Gocksch, Korthals-Altes & RDP, hep-ph/9205231

Z(N) interface = 't Hooft loop: Korthals-Altes, Kovner & Stephanov, hep-ph/9909516

Corrections $\sim g^3$: Giovannangeli & Korthals-Altes hep-ph/0412322

~ g⁴: Korthals-Altes, Laine, Romatschke 08...

How color evaporates in the semi-QGP

AMMPV: simple trick.

tr
$$\frac{1}{e^{(E-iQ^a)/T}-1}$$
 = tr $\sum_{j=1}^{\infty} e^{-j(E-iQ^a)/T} = \sum_{j=1}^{\infty} e^{-jE/T} \text{ tr } \mathbf{L}^j$

 $L = e^{i Q/T} = Wilson line$. Obtain expressions in terms of moments of L, L^j.

We don't know (yet) effective theory for Q's. So we guess.

Take first moment, $l = \langle loop \rangle = \langle tr L \rangle / N$, from lattice for N = 3.

For higher moments, given *l*, assume either: 1. Gross-Witten, or 2. step function.

L ~ propagator of *infinitely* heavy (test) quark.

In this semi-cl. expansion, for colored fields of any momentum and mass,

As $l \rightarrow 0$, all quarks suppressed $\sim l$; all gluons, $\sim l^2$: universal color evaporation

Smells right: *all* colored fields *should* evaporate as $\langle loop \rangle \rightarrow 0$.

Shear viscosity in the semi-QGP

Shear viscosity, η , in the complete QGP:

Arnold, Moore & Yaffe, hep-ph/0010177 & 0302165 = AMY.

Generalize to $Q \neq 0$: Boltzmann equation in background field.

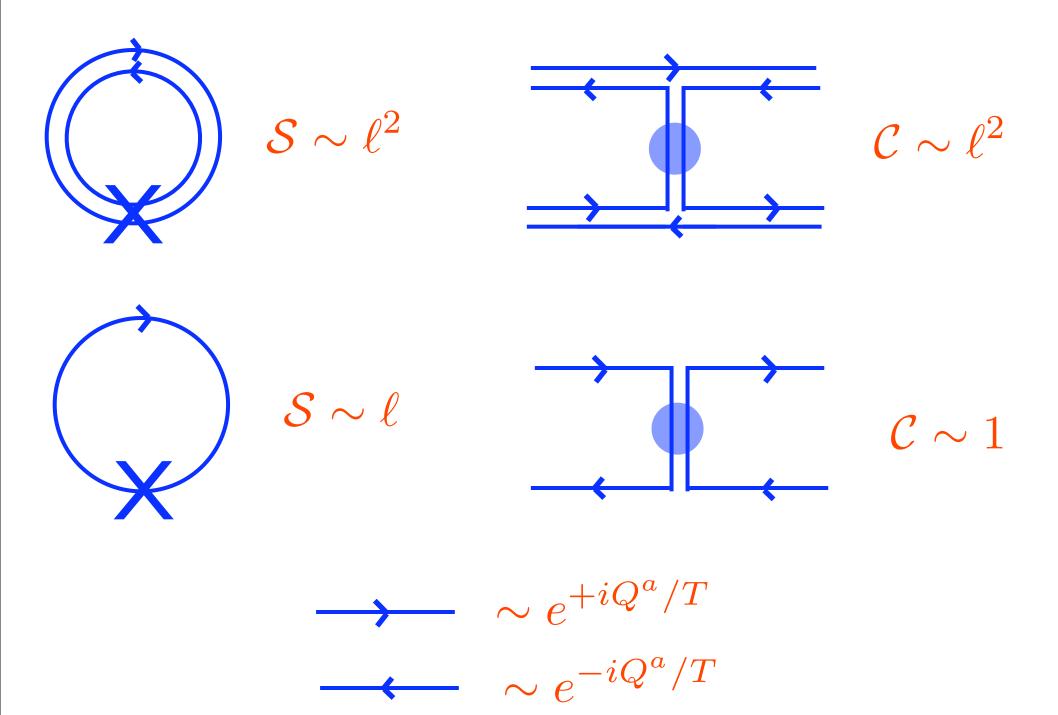
$$\eta = \frac{S^2}{C}$$
 $S = \text{source}, C = \text{collision term}. Two ways of getting small } \eta$:

"Strong" QGP, *large* coupling $S \sim 1$, $C \sim (\text{coupling})^2 >> 1$.

 $\mathcal{N}=4$ SU(N), g^2 N = N = ∞ : $\eta/s = 1/4\pi$. Kovtun, Son & Starinets hep-th/0405231

"Semi" QGP: small loop at moderate coupling:

Pure glue: $S \sim \langle loop \rangle^2$, $C \sim g^4 \langle loop \rangle^2$

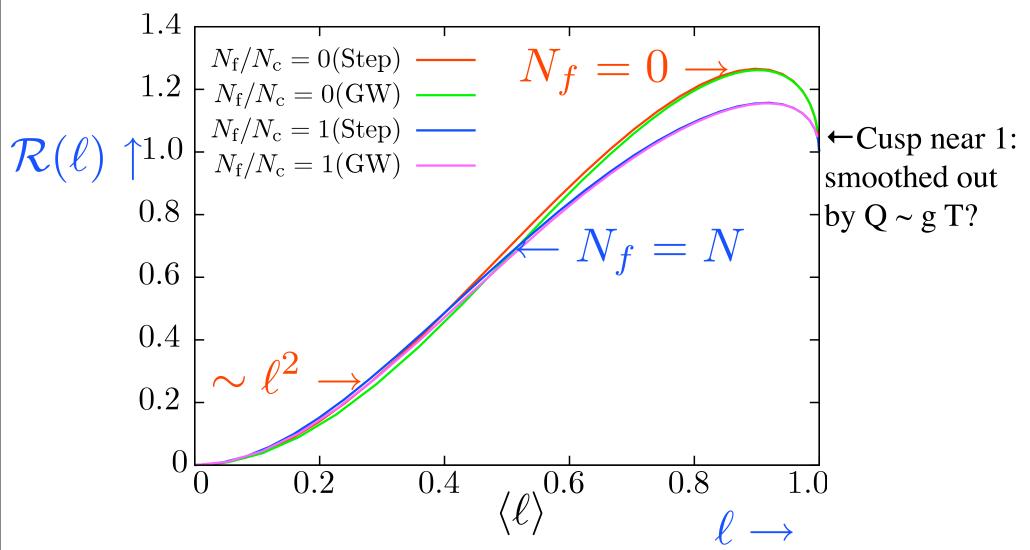

With quarks: $S \sim \langle loop \rangle$, $C \sim g^4$

Both: $\eta \sim \langle loop \rangle^2$

To leading log order: # from AMY, constant "c" beyond leading log

$$\frac{\eta}{T^3} = \frac{\#}{g^4 \log(c/g)} \, \mathcal{R}(\ell) \quad ; \quad \mathcal{R}(\ell \to 0) \sim \ell^2$$

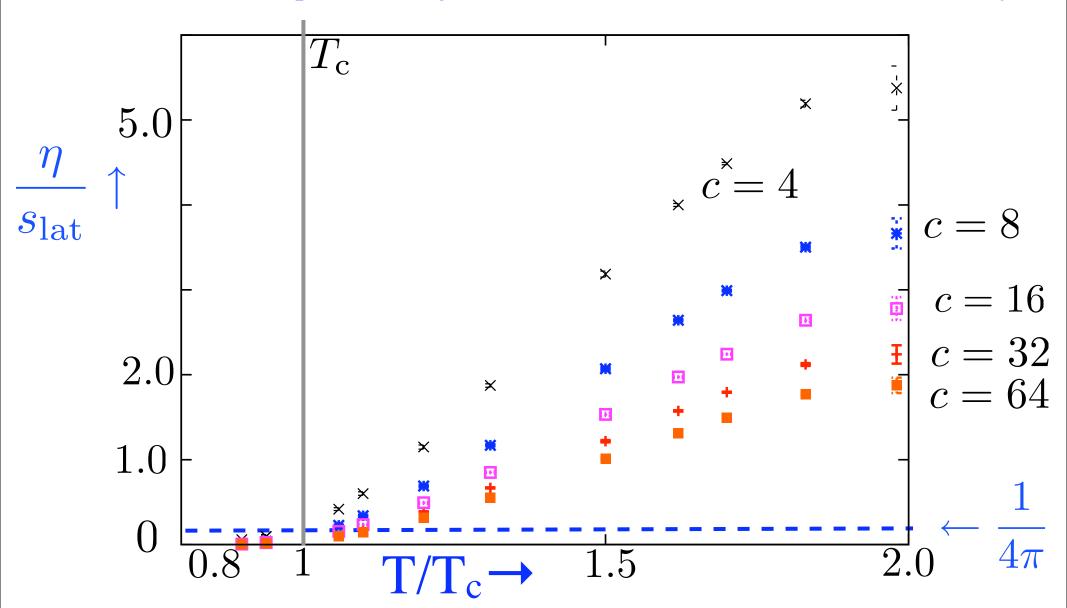
Counting powers of $\langle loop \rangle = l \rightarrow 0$



Small shear viscosity from color evaporation

R = ratio of shear viscosity in semi-QGP/complete-QGP at same g, T.

Two different eigenvalue distributions give very similar results!



Shear viscosity/entropy

Leading log shear viscosity/lattice entropy. $\alpha_s(T_c) \sim 0.3$.

Large increase from T_c to 2 T_c. Clearly need results beyond leading log.

Also need to include: quarks and gluons below T_c, hadrons above T_c. Not easy.

Strong- vs. Semi-QGP at the LHC

At RHIC, $\eta/s \sim 0.1 \pm 0.1$

Luzum & Romatschke, 0804.4015

Close to $\mathcal{N}=4$ SU(∞), $\eta/s=1/(4\pi)$.

Strong-QGP: in $\mathcal{N}=4$ SU(∞),

add scalar potential to fit lattice pressure

But η /s $remains = 1/4\pi$!

Evans & Threlfall, 0805.0956

Gubser & Nellore, 0804.0434


Gursoy, Kiritsis, Mazzanti & Nitti 0804.0899

So LHC nearly ideal, like RHIC.

Semi-QGP, and non-relativistic systems \rightarrow Large change in η /s from T_c to $2 T_c$.

At *early* times, LHC *viscous*, *un*like RHIC

Lacey, Ajitnand, Alexander, Chung, Holzman, Issah, Taranenko, Danielewicz & Stocker, nucl-ex/0609025 ↓

